Intramolecular lactam cross‐linking of short oligoureas

Short oligoureas containing Glu- and Lys-like residues were cross-linked by a lactam bridge. The oligomers differed in the position of Glu-like residue. The 1→4 side chain cyclization stabilized the oligourea helical turn whereas 2→4 cyclization decreased the helical propensity of stapled oligoureas.

Oligourea foldamers are known to fold into 2.5-helices, stabilized by three-centered hydrogen bonds, which makes them conformationally more rigid than peptides. Nevertheless, the folding propensity and conformational stability in solution depend on the length of the oligomer, as well as the temperature, solvent, and so forth. In the peptide field, there are many approaches known for constraining the backbone in the folded conformation, including the stapling of side chains by disulfide bridges, lactam formation, ring closing metathesis reaction, and others. In this work, we linked side chains by lactam bridges of short oligoureas (four residues), containing Glu- and Lys-like residues. The designed oligoureas differed in the position of the Glu-like residue. Next, the conformational properties of linear and cyclic compounds were studied in protic solvent (methanol) by nuclear magnetic resonance and circular dichroism. Importantly, it was discovered that larger macrocycles (24-membered) are more tolerated with respect to the helical turn than smaller macrocycles (19-membered) under the studied conditions.

Verified by ExactMetrics